
An Innovative Tool for IO
Workload Management on Workload Management on

Supercomputers

11/10/201
8 1

Lei Huang and Si Liu

HUST 2018
Nov 11, 2018

Team Members

Lei Huang
huang@tacc.utexas.edu
Texas Advanced
Computing Center

11/10/201
8 2

Si Liu
siliu@tacc.utexas.edu
Texas Advanced
Computing Center

mailto:huang@tacc.utexas.edu
mailto:siliu@tacc.utexas.edu

User Blocked By Administrators

User access log (Stampede2 at TACC, early 2018)

#user A, 2018-01-08, excessive MDS activity, running more than 48 tasks per node

Unhappy user: Ooops! My account is blocked!

#user B, 2018-02-15, running multiple IOR jobs and impacting other users of /scratch

#user C, 2018-03-13, beating up on the /scratch filesystem and impacting other users

#user D, 2018-04-10, causing excessive MDS activity to /work and /home1

Every a couple of weeks, TACC supercomputer administrators have to temporarily
block some users on TACC systems due to the filesystem issues raised by too
intense IO work!

11/10/201
8 3

Issues of Parallel Shared Filesystem

• Achilles' heel of HPC: filesystem is shared by all users on
all nodes (even crossing multiple clusters). It is a weak
point of modern HPC.

• Overloading metadata server results in global filesystem
performance degradation and even unresponsiveness. performance degradation and even unresponsiveness.

• Many practical applications (in computational fluid
dynamics, quantum chemistry, machine learning, etc.)
raise a huge amount of IO requests in a very short time.

• There is no strict enforced IO resource provisioning in
production (e.g. metadata sever throughput, bandwidth)
on user level or node level.

11/10/201
8 4

Potential Solutions
• System level

o A strong parallel filesystem that can handle any kind of IO requests
from all users without losing efficiency, e.g., upgrade hardware of MDS
to achieve better IO throughput
• Impractical, expensive or limited improvement

o Burst buffer
• Needs extra hardware and software, even changes in user code

• Application level• Application level
o A well-designed workflow with reasonable IO workload

• Recommended way
• Expertise required

• User level
o Users give up planned IO work to avoid heavy IO requests or decrease

the number of jobs
• A compromise rather than a solution

11/10/201
8 5

Potential Solutions
• System level

o A strong parallel filesystem that can handle any kind of IO requests
from all users without losing efficiency, e.g., upgrade hardware of MDS
to achieve better IO throughput
• Impractical, expensive or limited improvement

o Burst buffer
• Needs extra hardware and software, even changes in user code

• Application level• Application level
o A well-designed workflow with reasonable IO workload

• Recommended way
• Expertise required

• User level
o Users give up planned IO work to avoid heavy IO requests or decrease

the number of jobs
• A compromise rather than a solution

o An optimal system that makes heavy IO work under control
• Without rewriting users’code

11/10/201
8 6

Lustre Architecture (NICS website)
https://www.nics.tennessee.edu/computing-resources/file-systems/lustre-architecture

11/10/201
8 7

https://www.nics.tennessee.edu/computing-resources/file-systems/lustre-architecture

Lustre Architecture (NICS website)
https://www.nics.tennessee.edu/computing-resources/file-systems/lustre-architecture

11/10/201
8 8

https://www.nics.tennessee.edu/computing-resources/file-systems/lustre-architecture

GPFS Storage Topology (Virginia Tech)
https://www.slideshare.net/GabrielMateescu/sonas-44390281

11/10/201
8 9

https://www.slideshare.net/GabrielMateescu/sonas-44390281

GPFS Storage Topology (Virginia Tech)
https://www.slideshare.net/GabrielMateescu/sonas-44390281

11/10/201
8 10

https://www.slideshare.net/GabrielMateescu/sonas-44390281

Our Proposed User-side Solution

• Intercept IO related functions (open(), stat(), etc.) within
applications and keep a record of
o IO operation time (response time)
o IO operation frequency (calculated from saved time

stamp of recent function calls)
• Evaluate filesystem status (busy/modest used/free)

o Responding time per operation
• Evaluate IO workloads (recent IO request frequency)

o Node based and user based
• Insert proper delays when necessary

11/10/201
8 11

Optimal Overloaded IO Protection System
(OOOPS)

• An innovative IO workload managing system that
optimally controls the IO workload from the users' side.

• Automatically detect and throttle excessive IO workload
from supercomputer users to protect parallel shared
filesystems.

11/10/201
8 12

write_data() {
FILE *fOut;
fOut = fopen(name, mode);
…
}

User application

open(name, mode, …) {
…
}

glibc version of open()
defined in libc.so

Without OOOPS loaded

Function Interception

write_data() {
FILE *fOut;
fOut = fopen(name, mode);
…
}

User application

open(name, mode, …) {
…
open(name, mode, …);
…
}

OOOPS version of open()
defined in ooops.so

With OOOPS loaded (LD_PRELOAD OOOPS library)

open(name, mode, …){
…
}

glibc version of open()
defined in libc.so

11/10/201
8 13

Pseudo Code in the open() in OOOPS

int open(name, …)
{

call the open() function in libc;

get_response_time_and_time_stamp();get_response_time_and_time_stamp();
get_IO_request_frequency();
evaluate_server_status_and_io_freq();

if (server_busy or io_frequency_too_high)
sleep(some_time);

}
11/10/201
8 14

The Histogram of IO Operation Time

11/10/201
8 15

Decide the IO
response time
threshold

CDF of Response Time

/
/

_ open stat
open stat

cMAX FREQ
t

=
< >

c depends on
• Filesystem throughput
• System size
• Allocation proportion

11/10/201
8 16

Tentative Parameters for Stampede2

FILE_SYS_TAG_0="/scratch"
T_THRESHOLD_OPEN_0=467.97
MAX_OPEN_FREQ_0=1000
T_THRESHOLD_LXSTAT_0=247.37
MAX_STAT_FREQ_0=2000

FILE_SYS_TAG_0="/scratch"
T_THRESHOLD_OPEN_0=1198.67
MAX_OPEN_FREQ_0=500
T_THRESHOLD_LXSTAT_0=821.79
MAX_STAT_FREQ_0=800

Stampede2 SKX Stampede2 KNL

FILE_SYS_TAG_1="/work"
T_THRESHOLD_OPEN_1=907.14
MAX_OPEN_FREQ_1=500
T_THRESHOLD_LXSTAT_1=481.52
MAX_STAT_FREQ_1=1000

FILE_SYS_TAG_2="/home1"
T_THRESHOLD_OPEN_2=317.94
MAX_OPEN_FREQ_2=1000
T_THRESHOLD_LXSTAT_2=205.43
MAX_STAT_FREQ_2=2000

FILE_SYS_TAG_1="/work"
T_THRESHOLD_OPEN_1=1948.61
MAX_OPEN_FREQ_1=300
T_THRESHOLD_LXSTAT_1=1206.11
MAX_STAT_FREQ_1=500

FILE_SYS_TAG_2="/home1"
T_THRESHOLD_OPEN_2=1248.75
MAX_OPEN_FREQ_2=400
T_THRESHOLD_LXSTAT_2=731.82
MAX_STAT_FREQ_2=700

11/10/201
8 17

How to use it now (Stampede2 at TACC)

Ooops!
My account has been blocked due to my early IO work.

Do not worry.
Please rerun your programs with OOOPS.Please rerun your programs with OOOPS.

module use /work/01255/siliu/stampede2/ooops/modulefiles/
module load ooops
ibrun my-application-run #as usual, no source code change

Load the OOOPS module on Stampede2

11/10/201
8 18

The Recipe to Deploy OOOPS on
Other Supercomputers

Administrators:
1. Measure response time of function calls of open()
and stat(), then prepare config file
2. Compile ooops.so
3. Make a module
export IO_LIMIT_CONFIG=/full_path/ooops/1.0/conf/config

11/10/201
8 19

export IO_LIMIT_CONFIG=/full_path/ooops/1.0/conf/config
export LD_PRELOAD=/full_path/ooops/1.0/lib/ooops.so

Users:
module load ooops
Run their jobs

The Recipe to Deploy OOOPS on
Other Supercomputers

Administrators:
1. Measure response time of function calls of open()
and stat(), then prepare config file
2. Compile ooops.so
3. Make a module
export IO_LIMIT_CONFIG=/full_path/ooops/1.0/conf/config

11/10/201
8 20

export IO_LIMIT_CONFIG=/full_path/ooops/1.0/conf/config
export LD_PRELOAD=/full_path/ooops/1.0/lib/ooops.so

Users:
module load ooops
Run their jobs

Other than on TACC resources, we also tested
OOOPS on the supercomputers at NCAR and JHU.

Dynamical IO Request Control

Explicitly parameter settings
set_io_param server_idx t_open max_open_freq
t_stat max_stat_freq

An extra tool that allows users/administrators to modify
parameters for individual jobs during run time

Different levels of request control
$ set_io_param server_idx low
$ set_io_param server_idx medium
$ set_io_param server_idx high
$ set_io_param server_idx unlimited

11/10/201
8 21

IO Requests with Different Settings

11/10/201
8 22

Example of Running OpenFOAM

11/10/201
8 23

Example of Running TensorFlow

11/10/201
8 24

Example of Dynamically Throttling IO
Requests

11/10/201
8 25

OOOPS Highlights
• Convenient to HPC users

o No source code modification at all on uses’ side
o Little/no workflow update on users’ side
o Self-driven slowdown IO work when necessary

• Valuable on supercomputers• Valuable on supercomputers
o Protect filesystem from overloaded IO requests
o Little overhead: minimal/slight influence on performance except

some jobs performing excessive IO work
o Easy to deploy on an arbitrary cluster as long as file system is

POSIX compliant
o Scale up to any size of supercomputers
o Little work for system administrators
o Dynamically control running jobs’ IO requests without interruption

11/10/201
8 26

Limitations

• The IO resource provisioning policy is too simple.

• OOOPS will lead to noticeable performance • OOOPS will lead to noticeable performance
degradation for the jobs with very intensive IO for
significant time.

11/10/201
8 27

Limitations

• The IO resource provisioning policy is too simple.

• OOOPS will lead to noticeable performance • OOOPS will lead to noticeable performance
degradation for the jobs with very intensive IO for
significant time.

11/10/201
8 28

Transient file system based on local storage
(memory, hard drive, SSD, etc.) based on MPI.
“fanstore: enabling efficient and scalable i/o for
distributed deep learning”, Zhao Zhang and Lei
Huang, et al.

Conclusion

• We developed a new tool (OOOPS) to help
ü users carry out heavy IO work that is originally not

allowed
ü administrators protect the cluster from overload

• We enforce a fair-sharing IO resource provisioning policy
on client side practically (instead of server side)
ü Treat IOPS/Metadata server throughput as a resource
ü Increase system capacity (applications with heavy IO

load)

11/10/201
8 29

Acknowledgement

Colleagues at TACC
● Zhao Zhang ● Junseong Heo
● Tommy Minyard ● Robert McLay
● Bill Barth ● John Cazes
Stampede2 early users of OOOPS

Other HPC centers
● Davide Del Vento (NCAR)
● Kevin Manalo (JHU)

11/10/201
8 30

If you happen to have
some IO jobs banned by
administrators, or you
are the administrators
observing excessive
load on your file system
server,

you should try OOOPS!

huang@tacc.utexas.edu
siliu@tacc.utexas.edu

Picture from https://www.dreamstime.com

11/10/201
8 31

mailto:huang@tacc.utexas.edu
mailto:siliu@tacc.utexas.edu
https://www.dreamstime.com

